Automatic Parameter Selection by Minimizing Estimated Error

نویسندگان

  • Ron Kohavi
  • George H. John
چکیده

We address the problem of nding the parameter settings that will result in optimal performance of a given learning algorithm using a particular dataset as training data. We describe a \wrapper" method, considering determination of the best parameters as a discrete function optimization problem. The method uses bestrst search and crossvalidation to wrap around the basic induction algorithm: the search explores the space of parameter values, running the basic algorithm many times on training and holdout sets produced by cross-validation to get an estimate of the expected error of each parameter setting. Thus, the nal selected parameter settings are tuned for the speci c induction algorithm and dataset being studied. We report experiments with this method on 33 datasets selected from the UCI and StatLog collections using C4.5 as the basic induction algorithm. At a 90% con dence level, our method improves the performance of C4.5 on nine domains, degrades performance on one, and is statistically indistinguishable from C4.5 on the rest. On the sample of datasets used for comparison, our method yields an average 13% relative decrease in error rate. We expect to see similar performance improvements when using our method with other machine learning algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Smoothing parameter selection in two frameworks for penalized splines

There are two popular smoothing parameter selection methods for spline smoothing. First, smoothing parameters can be estimated minimizing criteria that approximate the average mean squared error of the regression function estimator. Second, the maximum likelihood paradigm can be employed, under the assumption that the regression function is a realization of some stochastic process. In this arti...

متن کامل

Minimizing Algebraic Error

This paper gives a widely applicable technique for solving many of the parameter estimation problems encountered in geometric computer vision. A commonly used approach in such parameter minimization is to minimize an algebraic error function instead of a possibly preferable geometric error function. It is claimed in this paper, however, that minimizing algebraic error will usually give excellen...

متن کامل

An Efficient Framework for Accurate Arterial Input Selection in DSC-MRI of Glioma Brain Tumors

Introduction: Automatic arterial input function (AIF) selection has an essential role in quantification of cerebral perfusion parameters. The purpose of this study is to develop an optimal automatic method for AIF determination in dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) of glioma brain tumors by using a new preprocessing method.Material and Methods: For this study, ...

متن کامل

Autmatic Parameter Selection by Minimizing Estimated Error

We address the problem of nding the parameter settings that will result in optimal performance of a given learning algorithm using a particular dataset as training data. We describe a \wrapper" method, considering determination of the best parameters as a discrete function optimization problem. The method uses best-rst search and cross-validation to wrap around the basic induction algorithm: th...

متن کامل

Sparse Boosting

We propose Sparse Boosting (the SparseL2Boost algorithm), a variant on boosting with the squared error loss. SparseL2Boost yields sparser solutions than the previously proposed L2Boosting by minimizing some penalized L2-loss functions, the FPE model selection criteria, through smallstep gradient descent. Although boosting may give already relatively sparse solutions, for example corresponding t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015